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Human-in-the-loop optimization
of exoskeleton assistance
during walking
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Exoskeletons and active prostheses promise to enhance human mobility, but few
have succeeded. Optimizing device characteristics on the basis of measured human
performance could lead to improved designs. We have developed a method for identifying
the exoskeleton assistance that minimizes human energy cost during walking. Optimized
torque patterns from an exoskeleton worn on one ankle reduced metabolic energy
consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with
exoskeletons worn on one or both ankles, during a variety of walking conditions, during
running, and when optimizing muscle activity. Finding a good generic assistance pattern,
customizing it to individual needs, and helping users learn to take advantage of the
device all contributed to improved economy. Optimization methods with these features
can substantially improve performance.

F
or more than a century, inventors and sci-
entists have developed exoskeletons and ac-
tive prostheses intended to improve human
locomotor performance, particularly in terms
of energy economy (1). Few approaches have

been successful (2–8), however, and only modest
enhancements have been achieved compared to
the potential benefits expected on the basis of sim-
ulations (9–11). An overreliance on intuition and
specialized hardware may be partially responsi-
ble for these shortcomings. Assistance strategies
have typically been derived from mathematical
models (12), biomechanics observations (13), and
humanoid robots (14), but each simplifies impor-
tant aspects of the human-robot system (15). Ex-
periments have primarily been conducted using
specialized prototypes that embed a single in-
tuited functionality, with each prototype requir-
ing years of development, limiting exploration to
only a small set of potential assistance strategies.
Compounding the challenge, physiological and
neurological differences between individuals can
cause divergent responses to the same device
(16–18), and responses can change considerably
during the course of adaptation (19, 20).
Methods for automatically discovering, custom-

izing, and continuously adapting assistance could
overcome these challenges, allowing exoskeletons
and prostheses to achieve their potential.We have
developed approaches in which device control is
systematically varied during use so as tomaximize
human performance, which we call “human-in-
the-loop optimization” (Fig. 1A). Such techniques
can take inspiration fromhumans, who naturally

optimize their coordination patterns for energy
cost and other aspects of locomotor performance
(21).However, closing the looponhumanperform-
ance is challenging. Objective functions based on
measurements of human performance typically
require lengthy evaluation periods and contain
substantial noise. The best available estimate of
metabolic energy cost, for example, requires about
oneminute of respiratory data per evaluation (22).
The human portion of the system also has time-
varying dynamics that make optimization diffi-
cult, including slow components of adaptation
(19) and strong history dependence (20), reflect-
ing complex neurocognitive factors (23). Control
laws that are general enough to approximate glob-
ally optimal assistance strategies are likely to re-
quire multiple parameters per assisted joint (10),
resulting in high-dimensional optimization prob-
lems. Initial efforts in this domain have demon-
strated the ability to optimize a single gait or device
parameter using line search (24) or gradient
descent (25), but these methods are inefficient,
being sensitive to drift andnoise, and scale poorly,
requiring many more evaluations for each new
parameter to be optimized, particularly in the pres-
ence of parametric interactions (26). Many opti-
mization methods that work well in simulation
(27 ) are subject to these limitations; building an
approximation of the system takes time, and the
human changes during that time.
We have developed a sample-efficient method

of identifying the exoskeleton control parameters
that minimize the metabolic energy cost of hu-
man walking (Fig. 1B). During optimization, the
user walks while the exoskeleton applies assist-
ance. The exoskeleton periodically changes the
pattern of assistance, defined by a control law,
while metabolic rate is measured. Steady-state
metabolic energy cost is estimated for each con-
trol law by fitting a first-order dynamical model
to 2 min of transient metabolic data (fig. S1) (26).

After a prescribed number of control laws have
been evaluated, forming one generation, a co-
variance matrix adaptation evolution strategy
(CMA-ES) (28) is used to calculate the next gen-
eration of control laws to be tested. Themean of
each new generation represents the best esti-
mate of the optimal control parameter values,
and the shape and size of the distribution are
chosen to increase the likelihood of further im-
provement in subsequent generations. This op-
timization strategy is relatively tolerant of both
measurement noise and human adaptation, be-
cause neither objective function values nor their
derivatives are used directly, and each genera-
tion is evaluated independently. It scales well in
benchmarking problems (28), with a suggested
generation size that increases with the logarithm
of the number of control parameters.
We tested our method by optimizing the pat-

tern of assistive torque applied by an exoskeleton
worn on one ankle during walking. We applied
assistance at one ankle to allow comparisons to
a prior study that used the same hardware (17).
Ankle torque was determined by four parame-
ters: peak torque, timing of peak torque, and rise
and fall times (Fig. 2A) (26). This allowed for a
wide range of possible torque patterns (Fig. 2B),
including patterns approximating those previous-
ly found to be beneficial (3–5). This parameteriza-
tion also implicitly allowed adjustment of features
such as the timing and amount of positive joint
work, which may be important to energy econ-
omy (29). Some torque patterns were not possible
with this parameterization, such as those with
multiple peaks.More complex patterns, defined by
additional parameters, might allow better approx-
imations of global optima at the cost of lengthier
optimization periods. A generation size of eight
was chosen on the basis of (28), and a target of
four generations was set on the basis of pilot re-
sults (26). Torque was applied to one ankle using
a versatile exoskeleton emulator system (30) (Fig.
2, C and D, and figs. S2 and S3) with precise low-
level torque control (31). The emulator, inspired in
part by other laboratory-based testbeds (32–34),
allows a wide range of assistive behaviors to be
applied in rapid succession, without the need to
design or build new hardware (35).
We optimized assistance for 11 participants

(subjects 1 to 11; table S1) as they walked on a
treadmill at a normal speed (1.25 m s−1). After
optimization, we performed validation tests
comparing optimized assistance with a fully pas-
sive “zero-torque” mode and with a “static” as-
sistance condition. Static assistance approximated
the best hand-tuned torque pattern for this de-
vice, which had previously resulted in a 6% reduc-
tion in energy cost compared to zero torque (17).
The double-reversal validation test prevented
confounding influences from measurement noise
during optimization and trial order during val-
idation (26). Participants were not exposed to
any of the validation conditions during optimi-
zation, because optimized assistance was the
weighted average of the best control laws from
the final generation (26). The primary outcome
was the energy cost of walking, defined as gross
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metabolic rate during walking minus the rate
measured while standing still.
Optimized assistance substantially improved

energy economy for all participants, confirming
the effectiveness of the method. Optimized pa-
rameters were identified after four generations
(64 min of walking) for all but two participants,
who appeared to become trapped in localminima,
requiring a reset of the algorithm and additional
walking (128 and 208 min total; table S2). Op-
timized assistance reduced the metabolic cost of
walking to 2.16 ± 0.38 W kg−1, down from 2.84 ±
0.40 W kg−1 with zero torque (mean ± standard
deviation). Energy cost reductions ranged from

14.2 to 37.9% (fig. S4 and table S3), with an aver-
age reduction of 24.2 ± 7.4% (t test, P = 1 × 10−6,
n = 11; Fig. 3A). By the same measure, the largest
average reduction provided by hand-tuned ankle
exoskeletons has been 14.5%, with devices worn
on both ankles (4), and the largest reduction for
any exoskeleton has been 22.8%, with an exosuit
acting at both hips and both ankles (8). Wearing
the exoskeleton in zero-torquemode is about 10%
more costly thanwalking in normal shoes with-
out the exoskeleton (Fig. 3B) (17), suggesting about
a 14% net improvement with optimized assist-
ance compared to normal shoes. Extrapolating
these results to an autonomous device is difficult,

with expected benefits from streamlining for a
single control law and expected costs for carrying
motors and batteries. However, a rough estimate
(26) obtained by scaling an established autono-
mous exoskeleton (4) suggests improved perform-
ance with optimized assistance.
Optimized assistance patterns varied widely

across participants (Fig. 3C), demonstrating the
importance of customization. For example, the
timing of optimized torque onset ranged from on-
set at 17% to onset at 37%of the stride period (Fig.
3D), or about half the testable range in this and
prior studies (3). Optimized assistance didnot fully
replace human ankle torque, nor did it provide the
maximum possible positive mechanical work, in-
consistent with some predictions (4, 10). Opti-
mized torque patterns (Fig. 3D) did share some
qualitative features with each other, such as a
peak torque that occurred at about 50% of stride,
suggesting qualities that may be beneficial for
most people and useful initial parameters for fu-
ture optimizations. However, even subtle differ-
ences in torque can have large and unexpected
effects on energy use, arising from complex in-
teractions with the musculoskeletal and nervous
systems (36, 37). Human-in-the-loop optimization
accommodates this complexity.
Comparisons involving the static control law

suggest three separate contributions to the suc-
cess of this approach: discovering a good generic
assistance pattern, customizing it to individual
users, and facilitating motor learning. Static as-
sistance (Fig. 3E) was similar to the average of the
optimized control laws, and in our prior study
(17), it delivered a 6% reduction in energy cost.
This supports the idea that, once discovered, a
good generic control law can be beneficial. Indi-
vidually optimized assistance resulted in 5.8 ±
6.2% lower metabolic rate than with the static
control law (t test, P = 0.01, n = 11). Eight of 11
participants had a lower metabolic rate with op-
timized assistance, with the difference in rate
ranging from a 3.3% increase to a 16.5% reduc-
tion. This confirms the benefits of customization.
Static assistance resulted in a 19.3 ± 8.6% re-
duction in energy cost compared to zero torque
(t test, P = 4 × 10−5, n = 11), a larger improve-
ment than in our prior study (17). The primary
differences between these studies relate to the
conditions during adaptation, which indicates
an important role for facilitating motor learning.
Participants had a similar duration of exposure
to the exoskeleton in both studies, but in the prior
study, participants were trained with a narrow
range of eight static control laws, whereas during
optimization, they experienced 32 diverse con-
trol laws. These wide-ranging control laws, some
of which participants notedwere initially uncom-
fortable, may have forced them to explore new
motor control strategies, which has been shown
to be a necessary part of skill acquisition in some
interventions (20).
This experiment was not designed to isolate

the relative contributions of generic assistance,
customization, or facilitating learning, but all
were important to the large overall improvement
in energy economy, and each could dominate
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Fig. 2. Control law and exoskeleton hardware. (A) Parameterization of ankle torque. Each control
law determined applied torque as a function of time, normalized to stride period, as a cubic
spline defined by peak time, rise time, fall time, and peak torque. (B) Examples of possible torque
patterns. (C) Exoskeleton emulator system. Off-board motor and control hardware actuated a
tethered exoskeleton worn on one ankle while participants walked on a treadmill. (D) Ankle
exoskeleton. Drive rope tension caused the device to push on the shank, heel, and toe contact,
generating an ankle torque. High-quality images are shown in figs. S2 and S3.

Fig. 1. Human-in-the-loop optimization. (A) Measurements of human performance are used to
update device control so as to improve performance in the human portion of the system. (B) A
method for minimizing the energy cost of human walking, in which various control laws are applied,
metabolic (met.) rate is quickly estimated (est.) for each, costs are compared, and an evolution
strategy is used to generate a new set of control laws to be tested, all during walking. p1 and p2 are
hypothetical control parameters.
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in some contexts. With a new, simple device
and a homogeneous population, the initial dis-
covery of the best generic design would be crit-
ical. In a diverse patient population, benefits
might come almost entirely from customization.
With complex control architectures, facilitating
motor learning could be decisive. In each case,
human-in-the-loop optimization would provide
a benefit, but for different reasons.
We demonstrated the generality of this ap-

proach in single-subject studies with a different
device and several additional locomotion condi-
tions. One new participant (subject 12; table S1)
wore exoskeletons (30) on both ankles (fig. S5).
Optimized assistance reduced the metabolic cost
of walking at a typical speed (1.25 m s−1; 33%
reduction versus zero torque, 25% versus nor-
mal shoes; Fig. 4B), walking at a faster speed
(1.75 m s−1; 39% reduction versus zero torque,
30% versus normal shoes; Fig. 4C), walking up-
hill (10% incline; 26%reduction versus zero torque,
21% versus normal shoes; Fig. 4D), and loaded
walking (vest weighing 20% of body mass; 15%
reduction versus zero torque, 4% versus nor-
mal shoes; Fig. 4E). At a slow walking speed
(0.75 m s−1), the algorithm drove torque to its
lower limit, resulting in a small reduction in en-
ergy cost compared to zero torque (Fig. 4A) and a
19% reduction compared to the initial control law
(fig. S6). These results demonstrate the effective-
ness of the method across different walking con-
ditions, including cases where the best action is
none, and confirm expected improvements com-
pared to normal walking. We also applied the ap-
proach to running with exoskeletons on both
ankles (subject 2; table S1) and found a 27% im-
provement in energy cost compared to the zero-
torque mode and 13% energy savings compared
to normal running shoes (Fig. 4F). This demon-
strates the effectiveness of the method for differ-
ent gaits.With another newparticipant (subject 13;
table S1), we applied the approach to theminimi-
zation of calf muscle activity, rather than meta-
bolic rate. Altered muscle activity can be a useful
performancemeasure, for example, in rehabilita-
tion. Soleus activity in the optimized condition
was reduced by 41% compared to the zero-torque
mode and 36% compared to walking in normal
shoes (Fig. 4G). This demonstrates the ability to
addressmultiple physiological objectives. Detailed
protocols and results are provided in (26) and
figs. S6 to S8. These tests hint at the potential
for a new type of biomechanics study, in which
human-in-the-loop optimization can be leveraged
to compare the best possible outcomes for dif-
ferent devices or gait conditions or to test how
various features of gait change with optimized
performance.
We performed a test of convergence with a

subset of participants in the main study (n = 8)
by continuing the optimization for an additional
four generations, andwe foundonly small changes
in optimized parameters (table S3) and no further
reduction in metabolic rate (fig. S9). Participants
with prior experience using an exoskeleton (n= 5)
seemed to have greater improvements in energy
economy (fig. S10), suggesting that longer-time-

scale adaptationmight be at play. Optimized exo-
skeleton control laws all included substantial
net-positivemechanical work, but amounts varied
strongly across participants and were lower with
optimized assistance than with static assistance
(fig. S11). Minimizing human energy consump-
tionwas therefore not equivalent tomaximizing
exoskeletonmechanical work, further illustrating
how difficult it is to reason about how exoskel-
etons should work and what characteristics will
be optimal.
The evolutionary strategy that we used was

more effective than other methods that we tried,
but it seems likely that improved techniques
could be developed. In early pilot tests of related
methods, model-based optimization techniques
were ineffective because of sensitivity to noise
and adaptation dynamics. We have illustrated
this problem by generating quadratic approx-
imations of data for each participant in themain
experiment, which explain little variance and
make unreasonable estimates of optimal param-
eter values (table S4). New candidate algorithms
should tolerate high measurement noise, facili-

tate human adaptation, and require very few
evaluations before converging. It remains to be
seen how the duration of the optimization period
will scale with additional parameters for this and
other algorithms.
We expect human-in-the-loop optimization to

improve the effectiveness of assistive devices in
many contexts. Successful optimization of a four-
dimensional control law in a relatively short time
suggests that optimizing exoskeletons andprosthe-
ses of greater complexitymay be possible. Optimiz-
ing a similar number of parameters in a feedback
control structure, such as a neuromuscularmodel
(38), or switching between optimized modes (39)
could enhance performance under changing
locomotor conditions. Successfully reducing both
metabolic rate and muscle activity suggests that
alternate objective functions with similar prop-
erties could be optimized—for example, related
to speed (40), endurance (41), balance, or overall
satisfaction. Versatile emulator systems could be
used to identify optimal device characteristics dur-
ing a prescription process, and customized mo-
bile devices could then be fabricated. In daily life,
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Fig. 3. Experimental results. (A) Metabolic energy cost of walking for each condition, tested in
validation trials. Optimized assistance resulted in the lowest metabolic rate and a large reduction
compared to the zero-torque condition. Variability is primarily due to differences between
participants. Bars are means, error bars are standard deviations, and asterisks denote statistical
significance (P < 0.05). (B) Results from a prior experiment using the same hardware (17),
comparing the zero-torque condition with walking in normal shoes (no exoskeleton) or with static
assistance. Static assistance provided a smaller benefit in the prior study. Bars are means, and error
bars are standard deviations. (C) Optimized control law parameter values. Optimized values
varied widely across participants. Values are normalized to their allowable range (26). Lines are
medians, boxes cover the 25th to 75th percentiles, and whiskers show the range. (D) Optimized
ankle exoskeleton torque pattern for each participant. Patterns varied widely and spanned a
large portion of the allowable range. Lines are measured torque, normalized to stride time and body
mass, averaged across strides. (E) Torque applied in the static and zero-torque conditions. The
static pattern, based on (17), is similar to the optimized patterns but resulted in higher metabolic
rate. Torque was negligible in the zero-torque mode. Lines are measured torque, normalized to stride
time and body mass, averaged across strides and participants.
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a proxy measure such as heart rate or muscle ac-
tivity (42) could be used for optimization, provid-
ing noisier butmore abundant performance data.
These approaches have scope to improvemobility
for people with a wide range of distinct physio-
logical needs, from individualswith chronic stroke
to athletes.
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Fig. 4. Single-subject studies under alternate conditions. (A) Slow walking (0.75 m s−1).
(B) Normal walking (1.25 m s−1). (C) Fast walking (1.75 m s−1). (D) Uphill walking (10% grade).
(E) Loaded walking (load equal to 20% of body mass). (F) Running (2.68 m s−1). All speeds, grades,
loads, and gaits were with bilateral ankle exoskeletons. (G) Optimizing soleus muscle activity,
rather than metabolic rate, during normal-speed walking. In each case, one participant was tested
(n = 1). The method identified assistance patterns that substantially improved the target outcome
in all circumstances. Optimized torque patterns can be found in figs. S6 to S8.
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